Flow around a NACA0018 airfoil with a cavity and its dynamical response to acoustic forcing

نویسندگان

  • W. F. J. Olsman
  • J. F. H. Willems
  • T. Colonius
  • R. R. Trieling
چکیده

Trapping of vortices in a cavity has been explored in recent years as a drag reduction measure for thick airfoils. If, however, trapping fails, then oscillation of the cavity flow may couple with elastic vibration modes of the airfoil. To examine this scenario, the effect of small amplitude vertical motion on the oscillation of the shear layer above the cavity is studied by acoustic forcing simulating a vertical translation of a modified NACA0018 profile. At low Reynolds numbers based on the chord (O(10)), natural instability modes of this shear layer are observed for Strouhal numbers based on the cavity width of order unity. Acoustic forcing sufficiently close to the natural instability frequency induces a strong non-linear response due to lock-in of the shear layer. At higher Reynolds numbers (above 10) for Strouhal number 0.6 or lower, no natural instabilities of the shear layer and only a linear response to forcing were observed. The dynamical pressure difference across the airfoil is then dominated by added mass effects, as was confirmed by numerical simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Flow over an Airfoil with a Cavity

Two-dimensional direct numerical simulation of the flow over a NACA0018 airfoil with a cavity is presented. The lowReynolds number simulations are validated bymeans of flow visualizations carried out in awater channel. From the simulations, it follows that there are twomain regimes of flow inside the cavity. Depending on the angle of attack, the first or the second shear-layer mode (Rossiter to...

متن کامل

Aerodynamic Noise Computation of the Flow Field around NACA 0012 Airfoil Using Large Eddy Simulation and Acoustic Analogy

The current study presents the results of the aerodynamic noise prediction of the flow field around a NACA 0012 airfoil at a chord-based Reynolds number of 100,000 and at 8.4 degree angle of attack. An incompressible Large Eddy Simulation (LES) turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is performed by the Ffowcs Williams and Hawkings (FW-...

متن کامل

Double Multiple Stream Tube Model and Numerical Analysis of Vertical Axis Wind Turbine

The present paper contributes to the modeling of unsteady flow analysis of vertical axis wind turbine (VAWT). Double multiple stream tube (DSMT) model was applied for the performance prediction of straight bladed fixed pitch VAWT using NACA0018 airfoil at low wind speed. A moving mesh technique was used to investigate two-dimensional unsteady flow around the same VAWT model with NACA0018 airfoi...

متن کامل

Numerical Simulation of Flow Past Oscillating Airfoil Using Oscillation of Flow Boundary Condition

The present study is devoted to an approximate modeling for numerical simulation of flows past oscillating airfoils. In this study, it is shown that the harmonic oscillating objects can be studied by simple numerical codes that are not able to solve moving grids. Instead of using moving grid for the simulation of flowfield around an oscillating airfoil, this unsteady flow is solved on a fixed g...

متن کامل

Simulation of Pitching and Heaving Airfoil with Oscillation of Flow Boundary Condition

A pressure based implicit procedure to solve the Euler and Navier-Stokes equation is developed to predict transonic viscous and inviscid flows around the pitching and heaving airfoils with a high reslution scheme. In this process, nonorthogonal and non moving mesh with collocated finite volume formulation are used. In order to simulate pitching or heaving airfoil, oscillation of flow boundary c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011